
Extended HTML Form Attack.
Making use of Non-HTTP protocols to launch Cross Site Scripting attacks.

[2002-01-26]

Research Paper by Obscure
[obscure@eyeonsecurity.net]

Published on Eye on Security.
http://www.eyeonsecurity.net

Copyright © 2001,2002 eyeonsecurity Inc.,
Redistribution of this document is permitted as long as the contents
are not changed and this copyright notice is included.

Introduction

This paper will talk about a new way to inject HTML scripts, which makes use of
the same method described in the paper by Jochen Topf called �The HTML Form
Protocol Attack�. This novel method of injecting Active Scripts allows a person,
who has knowledge of the services running on a network, to steal cookies, which
can possibly mean hijacking of Web Application authentication as well as other
sensitive information stored in cookies.

The Original HTML form attack.

The research done by Jochen Topf shows how HTML forms can be used to
penetrate internal networks from a site outside that network, by making use of
well-known features of the HTTP protocol.

While the paper by Jochen Topf describes possibilities of sending commands to
internal servers, it does not take into account what gets displayed in on client
web browser. Instead it covers the fact that attackers may penetrate an internal
network, or servers, which make use of IP filters, by abusing the HTML Form.

This paper is available on
http://www.remote.org/jochen/sec/hfpa/

Cross Site Scripting (CSS).

A recently discovered security problem involves modifying HTML content by
inserting malicious HTML tags or script. By inserting Active Scripting, it is possible
to steal session authentication of a web application. While this problem has been
around for years, it�s only been publicised in the recent years. �Microsoft
Passport Account Hijack Attack�, also on EyeonSecurity.net, is a paper which describes
CSS attacks by example.

CERT has also published an advisory:
http://www.cert.org/advisories/CA-2000-02.html

Playing with error messages and replies.

The ECHO service running on port 7 is a classic example of a service which replies
back to what you specify.

G:\>nc -v server 7
server [172.16.1.3] 7 (echo) open
hi there !
hi there !
^C
G:\>

Sending �hi there� to an ECHO server, will send back a �hi there� reply. What if I
make use of an HTML Form, and point it at the echo server?
The source of the page:

<form name="form1" method="post"
action="http://echo-server:7/" enctype="text/plain">
 <textarea name="eostest">
<html> <script>alert()</script>
 </textarea>
 <input type="submit" value="Submit">
</form>

The end result when the form is submitted looks something like:

POST / HTTP/1.1
POST / HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*
Accept-Language: en-gb
Accept-Language: en-gb
Content-Type: text/plain
Content-Type: text/plain
Accept-Encoding: gzip, deflate
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; Q312461)
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; Q312461)
Host: 172.16.130.1:1212
Host: 172.16.130.1:1212
Content-Length: 45
Content-Length: 45
Connection: Keep-Alive
Connection: Keep-Alive
Cache-Control: no-cache
Cache-Control: no-cache

eostest=<html> <script>alert(document.cookie)</script>
eostest=<html> <script>alert(document.cookie)</script>

Of course everything is echoed back (RFC 862). This sometimes (tested in
Internet Explorer 5.x and 6) causes the JavaScript code to be rendered within an
html page � which is made out of the echoed replies of the server.

A server running a Web Application (such as Web-Mail) and an echo server is
therefore obviously vulnerable to a CSS attack, which I describe as Extended
HTML Form Attack.

However many servers will not be running the echo service, since this is only
used for testing purposes mostly. On the other hand it is very frequent that they
will have other server software such as SMTP, FTP, NNTP and POP3. All of these
services tend to echo back some information specified by the client, depending on
the implementation of the protocol by the server developers and the settings
specified by the server�s administrator.

Finding vulnerable hosts � what this exploit depends on.

If we want to use this vulnerability to hijack a Web Application the following
requirements have to be satisfied:

1. The Web Application has to make use of cookie to keep the session alive.
2. A server which echoes back the attacker�s input is on the same domain as

the target Web Application
3. The victim user is using a vulnerable browser (IE5x/6 or Opera)
4. The victim user accesses an HTML page (website or e-mail) crafted by the

attacker. An attacker with a target in mind will generally make use of an
HTML e-mail and JavaScript to force the victim user submit the form.

The below is a list of servers which were actually successful in echoing back
JavaScript commands to the web browser:

Vendor Server Commands Example Command
Rhinosoft Serv-U 3.0 MKD, GET mkd <script>alert(document.cookie)</script>
WU-FTPD
Development
Group

WU-FTP USER, MKD, GET,
non-existant
command + script
as argument

user <script>alert(document.cookie)</script>
and
ASDF <script>alert(document.cookie)</script>

Ipswitch, Inc. Imail 6.06 RCPT rcpt to: img
src=javascript:alert(document.cookie)

The ProFTPD
Project.

ProFTPD USER,MKD,GET user <script>alert(document.cookie)</script>

Eudora QPOP(3.1.2) USER user <script>alert(document.cookie)</script>

This list is not exclusive and many other servers can be used to launch this type
of attack.

In my testing, I noticed that some vendors prevent this and other attacks by only
allowing a certain amount of errors to be generated for each connection. In this
case, since the HTTP request by the victim contains HTTP headers (i.e. POST
/a.cgi HTTP/1.1 etc), many errors will be generated and the connection is
terminated. This was found true on Microsoft SMTP server (part of IIS), and some
other servers.

When searching for vulnerable servers, it is probably the easiest to use SMTP
servers, since they show up in the MX records. Of course the other alternative is
port scanning � for FTP, SMTP, POP3, and NNTP.

What are the dangers?

This attack mentioned here can be exploited in various ways. Till now we only
mentioned how an attacker can use it to gather session cookies. In fact this is
probably the most dangerous and easily exploitable method.

However it can also be used in conjunction with the HTML Form Attack described
by Jochen Topf to return a result to the attacker. This way the attacker can
actually know that his attack was executed by injecting JavaScript code, which in
turn sends him back the resulting page.

Solutions

The solutions for this kind of attack are just like the ones mentioned in the
original document �The HTML Form Protocol Attack�. While Internet Explorer and
Opera are vulnerable to this attack, Netscape and Mozilla (without the proxy
settings- i.e. direct connection) restrict access to certain well-known ports, like 25
(SMTP), 21 (FTP), 110 (POP3) and 119 (NNTP). While I do not think this is a

server side issue, but rather a client side (web-browser) issue, servers could also
limit the number of errors for each session.

References

The HTML Form Protocol Attack
http://www.remote.org/jochen/sec/hfpa/

Malicious HTML Tags Embedded in Client Web Requests
http://www.cert.org/advisories/CA-2000-02.html

Microsoft Passport Account Hijack Attack
http://eyeonsecurity.net/papers/passporthijack.html

