
 
 
 
 
 
 
 
 
 
 
 
 
 

[Extended HTML Form Attack] 
 

last update: 26.January.2002 
Making use of Non-HTTP protocols to launch Cross Site Scripting attacks. 

 
 

Obscure [obscure@eyeonsecurity.net] 
 

EyeonSecurity. 
http://eyeonsecurity.net 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © 2001,2002 EyeonSecurity,  
Redistribution of this document is permitted as long as the contents 
are not changed and this copyright notice is included. 
 
 
 
 

mailto:obscure@eyeonsecurity.net
http://eyeonsecurity.net/


 

[INTRODUCTION] 3 

[THE ORIGINAL HTML FORM ATTACK] 3 

[CROSS SITE SCRIPTING (XSS)] 3 

[PLAYING WITH ERROR MESSAGES AND REPLIES] 3 

[FINDING VULNERABLE HOSTS – WHAT THIS EXPLOIT DEPENDS ON] 4 

[WHAT ARE THE DANGERS?] 5 

[SOLUTIONS] 5 

[REFERENCES] 6 



[Introduction] 
 
This paper will talk about a new way to inject HTML scripts, which makes use of the 
same method described in the paper by Jochen Topf called “The HTML Form 
Protocol Attack”. This novel method of injecting Active Scripts allows a person, who 
has knowledge of the services running on a network, to steal cookies, which can 
possibly mean hijacking of Web Application authentication as well as other sensitive 
information stored in cookies. 
 
 
[The Original HTML form attack] 
 
The research done by Jochen Topf shows how HTML forms can be used to 
penetrate internal networks from a site outside that network, by making use of well-
known features of the HTTP protocol. 
 
While the paper by Jochen Topf describes possibilities of sending commands to 
internal servers, it does not take into account what gets displayed in on client web 
browser. Instead it covers the fact that attackers may penetrate an internal network, 
or servers, which make use of IP filters, by abusing the HTML Form.  
 
This paper is available on  
http://www.remote.org/jochen/sec/hfpa/ 
 
 
[Cross Site Scripting (XSS)] 
 
A recently discovered security problem involves modifying HTML content by inserting 
malicious HTML tags or script. By inserting Active Scripting, it is possible to steal 
session authentication of a web application. While this problem has been around for 
years, it’s only been publicised in the recent years. “Microsoft Passport Account 
Hijack Attack”, also on EyeonSecurity.net, is a paper which describes XSS attacks 
by example.  
 
CERT has also published an advisory:  
http://www.cert.org/advisories/CA-2000-02.html 
 
 
[Playing with error messages and replies] 
 
The ECHO service running on port 7 is a classic example of a service which replies 
back to what you specify.  
 
G:\>nc -v server 7 
server [172.16.1.3] 7 (echo) open 
hi there ! 
hi there ! 
^C 
G:\> 
 
Sending “hi there” to an ECHO server, will send back a “hi there” reply. What if I 
make use of an HTML Form, and point it at the echo server? 
 
 
 
 

http://www.remote.org/jochen/sec/hfpa/
http://eyeonsecurity.net/
http://www.cert.org/advisories/CA-2000-02.html


The source of the page:  
 
<form name="form1" method="post" action="http://echo-
server:7/" enctype="text/plain"> 
  <textarea name="eostest"> 
<html> <script>alert()</script> 
  </textarea> 
  <input type="submit" value="Submit"> 
</form> 
 
The end result when the form is submitted looks something like:  
 
POST / HTTP/1.1 
POST / HTTP/1.1 
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-powerpoint, 
application/vnd.ms-excel, application/msword, */* 
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-powerpoint, 
application/vnd.ms-excel, application/msword, */* 
Accept-Language: en-gb 
Accept-Language: en-gb 
Content-Type: text/plain 
Content-Type: text/plain 
Accept-Encoding: gzip, deflate 
Accept-Encoding: gzip, deflate 
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; Q312461) 
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; Q312461) 
Host: 172.16.130.1:1212 
Host: 172.16.130.1:1212 
Content-Length: 45 
Content-Length: 45 
Connection: Keep-Alive 
Connection: Keep-Alive 
Cache-Control: no-cache 
Cache-Control: no-cache 
 
 
eostest=<html> <script>alert(document.cookie)</script> 
eostest=<html> <script>alert(document.cookie)</script> 
   
 
Of course everything is echoed back (RFC 862). This sometimes (tested in Internet 
Explorer 5.x and 6) causes the JavaScript code to be rendered within an html page – 
which is made out of the echoed replies of the server.  
 
A server running a Web Application (such as Web-Mail) and an echo server is 
therefore obviously vulnerable to a XSS attack, which I describe as Extended HTML 
Form Attack.  
 
However many servers will not be running the echo service, since this is only used 
for testing purposes mostly. On the other hand it is very frequent that they will have 
other server software such as SMTP, FTP, NNTP and POP3. All of these services 
tend to echo back some information specified by the client, depending on the 
implementation of the protocol by the server developers and the settings specified by 
the server’s administrator. 
 
 
[Finding vulnerable hosts – what this exploit depends on] 
 
If we want to use this vulnerability to hijack a Web Application the following 
requirements have to be satisfied: 



1. The Web Application has to make use of cookie to keep the session alive. 
2. A server which echoes back the attacker’s input is on the same domain as the 

target Web Application 
3. The victim user is using a vulnerable browser (IE5x/6 or Opera) 
4. The victim user accesses an HTML page (website or e-mail) crafted by the 

attacker. An attacker with a target in mind will generally make use of an 
HTML e-mail and JavaScript to force the victim user submit the form. 

 
The below is a list of servers which were actually successful in echoing back 
JavaScript commands to the web browser:  
 
Vendor Server Commands Example Command 
Rhinosoft Serv-U 3.0 MKD, GET mkd <script>alert(document.cookie)</script>
WU-FTPD 
Development 
Group 

WU-FTP USER, MKD, 
GET, non-
existant 
command + 
script as 
argument 

user <script>alert(document.cookie)</script>
and  
ASDF 
<script>alert(document.cookie)</script> 

Ipswitch, Inc. Imail 6.06 RCPT rcpt to: img 
src=javascript:alert(document.cookie) 

The ProFTPD 
Project. 

ProFTPD USER,MKD,GET user <script>alert(document.cookie)</script>

Eudora QPOP(3.1.2) USER user <script>alert(document.cookie)</script>
 
This list is not exclusive and many other servers can be used to launch this type of 
attack.  
 
In my testing, I noticed that some vendors prevent this and other attacks by only 
allowing a certain amount of errors to be generated for each connection. In this case, 
since the HTTP request by the victim contains HTTP headers (i.e. POST /a.cgi 
HTTP/1.1 etc), many errors will be generated and the connection is terminated. This 
was found true on Microsoft SMTP server (part of IIS), and some other servers.  
 
When searching for vulnerable servers, it is probably the easiest to use SMTP 
servers, since they show up in the MX records. Of course the other alternative is port 
scanning – for FTP, SMTP, POP3, and NNTP. 
 
 
[What are the dangers?] 
 
This attack mentioned here can be exploited in various ways. Till now we only 
mentioned how an attacker can use it to gather session cookies. In fact this is 
probably the most dangerous and easily exploitable method.  
 
However it can also be used in conjunction with the HTML Form Attack described by 
Jochen Topf to return a result to the attacker. This way the attacker can actually 
know that his attack was executed by injecting JavaScript code, which in turn sends 
him back the resulting page.  
 
 
[Solutions] 
 
The solutions for this kind of attack are just like the ones mentioned in the original 
document “The HTML Form Protocol Attack”. While Internet Explorer and Opera are 

http://rhinosoft.com/
http://www.wu-ftpd.org/
http://www.wu-ftpd.org/
http://www.wu-ftpd.org/
http://ipswitch.com/
http://www.proftpd.net/
http://www.proftpd.net/
http://www.eudora.com/qpopper/


vulnerable to this attack, Netscape and Mozilla (without the proxy settings- i.e. direct 
connection) restrict access to certain well-known ports, like 25 (SMTP), 21 (FTP), 
110 (POP3) and 119 (NNTP). While I do not think this is a server side issue, but 
rather a client side (web-browser) issue, servers could also limit the number of errors 
for each session.  
 
 
[References] 
 
The HTML Form Protocol Attack 
http://www.remote.org/jochen/sec/hfpa/ 
 
Malicious HTML Tags Embedded in Client Web Requests 
http://www.cert.org/advisories/CA-2000-02.html 
 
Microsoft Passport Account Hijack Attack 
http://eyeonsecurity.net/papers/passporthijack.html  

http://www.remote.org/jochen/sec/hfpa/
http://www.cert.org/advisories/CA-2000-02.html
http://eyeonsecurity.net/papers/passporthijack.html

	[INTRODUCTION]3[THE ORIGINAL HTML FORM ATTACK]3[C
	[The Original HTML form attack]
	[Cross Site Scripting (XSS)]
	[Playing with error messages and replies]
	[Finding vulnerable hosts – what this exploit dep
	
	
	
	Server




	[What are the dangers?]
	[Solutions]
	[References]

